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EQUATIONS OF STATE OF SOLIDS

Griineisen,* Born,* and Fiirth®* corresponding to the
Mie form for the potential energy U of an atom in
the interatomic force field, given by

U= —A /P04 B/, (10)

where 7 is the interatomic distance, and 4 and B are -

cither interaction constants or lattice sums. In this
case, the constants # and m are chosen either from
theoretical considerations (e.g., to correspond to a
Lennard-Jones potential) or from the requirement of
a fit to thermodynamic parameters (such as the lattice
energy) of the solid at normal pressure. To a large
extent, these equations of state from lattice models
have been supplanted for applications at high pressure
by the forms discussed previously. 4

Some discussion of the relative merits of these
various special forms of Eq. (1) is in order. Because of
the "generality of the underlying assumptions, one
might expect Birch’s equation of state to have a

. wide range of applicability, and such appears to be the
. case. The equation in the form (4) scems to reproduce

the majority of Bridgman’s experimental data on the
isothermal equations of state of inorganic solids,
within about the experimental uncertainty® (exclusive
of the occurrence of polymorphic phase transitions).
In the case of the highly compressible alkali metals,
for example, this statement appears true for normal
temperature up to the limit of Bridgman’s pressure
measurements (about 10% bars, where, in the case of
potassium, the fractional compression is about 3%).
The fact that it contains only one disposable parameter,
and fits such a wide range of data, makes Eq. (4)
extremely useful. )

On the other hand, use of Birch’s equation entails
some minor drawbacks at the lower pressures. For
sufficiently low pressure, the equation of state of any
solid can be described by the Bridgman equation

—(V=V4)/Ve=aP—bP? (11)
where a(=K¢') and b are constants.!® By means of
the Lorentz-Slater relation!®#

=—1(0 InK/d InV)p—1% (12)

for the Griineisen constant as evaluated from compres-
sibility parameters at fixed temperature 7', one can
obtain this constant for the solid at zero pressure as

(13)

from the Bridgman equation. However, the Lorentz-
Slater relation yields

7=b/a’2_?2i:

v=3(ntm—3), (14)

% E. Griineisen in Handbuch der Physik (Verlag Julius Springer,
Berlin, 1926), Vol. 10, pp. 1-59.

% M. Born, J. Chem. Phys. 7, 591 (1939). The equation of
state contains a temperature-dependent term which can be
omitted for purposes of the present discussion.

2 R, Fiirth, Proc. Roy. Soc. (London) A183, 87 (1944). The
equation of state contains a temperature-dependent term which
can be omitted for purposes of the present discussion,
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from Eq. (1), which corresponds to ¥y=11/6 for the
Birch equation. Unless the Griineisen constant of the
solid in question has this particular value, which
corresponds to 2b/a*=35 from* Eq. (13), the Birch
equation fails to yield the correct curvature of the
P—V curve at zero pressure. For the alkali metals,
specifically, the Birch values for the Griineisen constant
and the parameter 2b/a* seem definitely high, and the
constant values from Bardeen’s equation of 4/3 and
4, respectively, are closer to corresponding averages
over these metals obtained by means of Griineisen’s
law.2® On the other hand, it can be noted that the
average value of the Griineisen constant over most
solids has closely the Birch value, since Slater? has
estimated the average value of the ratio 2b/a* over
most materials as 5. Finally, one can observe that the
modified Murnaghan equation, with » evaluated in
terms of v by Eq. (8), can be reduced exactly to the
Bridgman equation by means of Eq. (13) when the
pressure is small. Thus, the equation of Murnaghan as
modified by the author is capable of yielding identically
the correct curvature of the P—V curve of a solid
at zero pressure.

One sees that the equations of Birch, of Murnaghan,
and of Bardeen are subsumed under the general
equation of state represented by Eq. (1). Various
equations (or special cases thereof) treated by Gombas
fall into the general class of Eq. (1) also.* The tempera-
ture dependence of all these special forms can be
obtained by determining the proper temperature
dependence of Eq. (1).

III. GENERAL TEMPERATURE-DEPENDENT
EQUATION

The special forms of Eq. (1) which have been
discussed yield reasonable approximations to the
pressure at fixed temperature, when the constants K,
and V, correspond to the temperature in question.
For all these forms, it is consistent with experimental
results to assume that the exponents # and = are
constants, and that the entire volume dependence of
the pressure is contained in the powers V=" and V-
appearing. The former assumption for the case of
Murnaghan’s equation will be examined in Sec. IV.
To generalize Eq. (1) to arbitrary temperature, it
will be postulated that the constants V, and K, are
replaced by parameters U and &, respectively, which
are functions only of temperature (aside from depend-
ence on constants fixed by an initial state).® The
generalization of Eq. (1) becomes

P= (n—m)? %[ (0/V)"— (0/V)"], (13)
and that of Eq. (2) is
K= (n—m)K[n(0/V)"—m(0/V)"]. (16)

27 Birch has shown (reference 4) that the value 26/a%=35 follows
directly from certain approximations in the theory of finite strain.

2 T, J. Gilvarry, J. Chem. Phys. 23, 1925 (1955).

# J. C. Slater, Phys. Rev. 57, 744 (1940).




